Convergence in Distribution for Uncertain Random Variables

نویسندگان

  • Rong Gao
  • Dan A. Ralescu
چکیده

A random variable is a measurable function from an uncertainty space to the set of real numbers, which is used to model randomness. An uncertain variable is a measurable function from uncertainty space to the set of real numbers, which is used to describe uncertainty. However, randomness and uncertainty often simultaneously appear in a complex system. Uncertain random variable provides a useful tool to handle such a hybrid case. This concept integrates random variable and uncertain variable into a broader view. For uncertain random variables, a basic and important topic is to discuss the convergence of its sequence. Specifically, this paper focuses on studying the convergence in distribution for a sequence of uncertain random variables without a common chance distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FURTHER RESULTS OF CONVERGENCE OF UNCERTAIN RANDOM SEQUENCES

Convergence is an issue being widely concerned about. Thus, in this paper, we mainly put forward two types of concepts of convergence in mean and convergence in distribution for the sequence of uncertain random variables. Then some of theorems are proved to show the relations among the three convergence concepts that are convergence in mean, convergence in measure and convergence in distributio...

متن کامل

SOME RESULTS OF MOMENTS OF UNCERTAIN RANDOM VARIABLES

Chance theory is a mathematical methodology for dealing with indeterminatephenomena including uncertainty and randomness.Consequently, uncertain random variable is developed to describe the phenomena which involveuncertainty and randomness.Thus, uncertain random variable is a fundamental concept in chance theory.This paper provides some practical quantities to describe uncertain random variable...

متن کامل

On the convergence of uncertain random sequences

In this paper, a useful inequality for central moment of uncertain random variables is proved. Based on this inequality, a convergence theorem for sum of uncertain random variables is derived. A Borel–Cantelli lemma for chance measure is obtained based on the continuity assumption of uncertain measure. Finally, several convergence theorems for uncertain random sequences are established.

متن کامل

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017